dc.contributor.advisor | Estupiñan Torres, Sandra Mónica | |
dc.contributor.advisor | Rivera Monroy, Zuly Jenny | |
dc.contributor.advisor | Pineda Castañeda, Héctor Manuel | |
dc.contributor.author | Hernandez Pardo, Andrea Carolina | |
dc.date.accessioned | 2022-06-14T19:14:15Z | |
dc.date.available | 2022-06-14T19:14:15Z | |
dc.date.issued | 2021 | |
dc.identifier.uri | https://repositorio.universidadmayor.edu.co/handle/unicolmayor/5603 | |
dc.description.abstract | La resistencia antimicrobiana (RAM) es una de las diez amenazas principales a la salud
pública reportadas por la Organización Mundial de la Salud (OMS)1
. Una de las principales
causas del creciente problema de la RAM, es la falta de nuevas terapias y/o agentes; en
consecuencia, muchas enfermedades infecciosas podrían volverse incontrolables2
. La
creciente aparición de microorganismos multidrogorresistentes (MDR), viene ligada a una
inapropiada administración y uso excesivo de antimicrobianos en humanos y animales
generando un aumento considerable de la resistencia a los tratamientos convencionales3,4
.
Dado el crecimiento acelerado y la expansión global de la RAM se ha impulsado la necesidad
de descubrir nuevos agentes antimicrobianos que logren mitigar esta problemática. Los
dendrímeros con actividad antimicrobiana son una alternativa de tratamiento, estas
macromoléculas con estructura simétrica bien definida y arquitectura tridimensional han
demostrado ser buenos agentes antimicrobianos y antibiofilm. Estos polímeros cuentan
con una estructura tridimensional bien definida y altamente ramificada, la cual puede ser
prediseñada y modificada en la síntesis para obtener moléculas con características físicas y
químicas específicas7
La mayoría de los derivados incluidos en esta monografía muestran
una buena actividad antimicrobiana frente a bacterias y hongos, teniendo en cuenta diferentes
caracteristicas, como el tipo de bacteria, hongo o aislado, la clase de sustituyente y la
distribución espacial de las moléculas. Considerando que aun quedan muchos retos en esta
línea de investigación. | spa |
dc.description.tableofcontents | Resumen 8
1. Introducción 9
2. Antecedentes 14
3. Marco teórico 17
3.1. Dendrímeros basados en compuestos de tipo calix[n]areno y calix[n]resorcinareno 17
3.2. Relación estructura actividad de dendrímeros derivados de calix[n]arenos y
calix[n]resorcinarenos 22
4. Diseño Metodológico 25
4.1. Tipo de investigación 25
4.2. Universo, población y Muestra 25
4.2.1. Universo 25
4.2.2. Población 25
4.2.3. Muestra 25
5. Metodología 25
5.1. Revisión bibliográfica 25
6. Resultados y discusión 26
6.1. Revisión bibliográfica 26
6.2. Actividad antimicrobiana 27
6.2.1. Actividad antibacteriana 27
6.2.2. Actividad antifúngica 47
6.2.3. Otras aplicaciones 54
6.2.3.1. Actividad antiviral 54
6.2.3.2. Actividad antiparasitaria 58
6.2.3.3. Actividad anticancerígena 60
7
7. Conclusiones 70
Referencias Bibliográficas 71
Anexos 79
Anexo 1. Actividad de dendrímeros en células plantónicas. 79
Anexo 2. Actividad de dendrímeros sobre biofilm 92
Anexo 3. Actividad de dendrímeros virus y parásitos 95
Anexo 4. Actividad anticancerígena de los dendrímeros 97 | spa |
dc.format.extent | 109p. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.publisher | Universidad Colegio Mayor de Cundinamarca | spa |
dc.rights | Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2021 | eng |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.title | Actividad antibacteriana, antifúngica y otras aplicaciones de dendrímeros con núcleos del tipo calixareno y/o resorcinareno: Revisión del estado del arte | spa |
dc.type | Trabajo de grado - Pregrado | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Bacteriólogo(a) y Laboratorista Clínico | spa |
dc.publisher.faculty | Facultad de Ciencias de la Salud | spa |
dc.publisher.place | Bogotá DC | spa |
dc.publisher.program | Bacteriología y Laboratorio Clínico | spa |
dc.relation.references | OM. https://www.who.int/bulletin/volumes/94/9/16-020916/es/. OMS [Internet]. 2016;
Available from: https://www.who.int/bulletin/volumes/94/9/16-020916/es/ | spa |
dc.relation.references | OMS. Role of antimicrobial restrictions in bacterial resistance control: a systematic
literature review. OMS [Internet]. 2020; Available from:
https://ezproxy.unicolmayor.edu.co:2163/science/article/pii/S0195670119303998 | spa |
dc.relation.references | Kamaruzzaman NF, Tan LP, Hamdan RH, Choong SS, Wong WK, Gibson AJ, et al.
Antimicrobial polymers: The potential replacement of existing antibiotics? Int J Mol
Sci. 2019;20(11). | spa |
dc.relation.references | Alfei S, Schito AM. From nanobiotechnology, positively charged biomimetic
dendrimers as novel antibacterial agents: A review. Nanomaterials. 2020;10(10):1–50. | spa |
dc.relation.references | Alfonso B, Casado C. Dendrímeros: Macromoléculas Versátiles Con Interés
Interdisciplinar. J Chem Inf Model. 2016;01(01):1689–99. | spa |
dc.relation.references | Aurelia Chis A, Dobrea C, Morgovan C, Arseniu AM, Rus LL, Butuca A, et al.
Applications and Limitations of Dendrimers in Biomedicine. Molecules. 2020;25(17). | spa |
dc.relation.references | da Cunha NB, Cobacho NB, Viana JFC, Lima LA, Sampaio KBO, Dohms SSM, et al.
The next generation of antimicrobial peptides (AMPs) as molecular therapeutic tools
for the treatment of diseases with social and economic impacts. Drug Discov Today.
2017;22(2):234–48. | spa |
dc.relation.references | Ahmed SA, Barış E, Go DS, Lofgren H, Osorio-Rodarte I, Thierfelder K. Assessing
the global poverty effects of antimicrobial resistance. World Dev. 2018;111:148–60. | spa |
dc.relation.references | OMS. Resistencia a los antimicrobianos. OMS [Internet]. Available from:
https://www.who.int/es/news-room/fact-sheets/detail/resistencia-a-los-antimicrobianos | spa |
dc.relation.references | Chávez-Jacobo VM. La batalla contra las superbacterias: No más antimicrobianos, no
hay ESKAPE. TIP Rev Espec en Ciencias Químico-Biológicas. 2020;23:1–11. | spa |
dc.relation.references | Velázquez-Acosta C, Cornejo-Juárez P, Volkow-Fernández P. Cepas E-ESKAPE
multidrogorresistentes aisladas en hemocultivos de pacientes con cáncer. Salud Publica
Mex. 2018;60(2):151–7. | spa |
dc.relation.references | Santajit S, Indrawattana N. Mechanisms of Antimicrobial Resistance in ESKAPE
Pathogens. Biomed Res Int. 2016;2016. | spa |
dc.relation.references | OMS. Resistencia a los antibióticos [Internet]. 2020. Available from:
https://www.who.int/es/news-room/fact-sheets/detail/resistencia-a-los-antibióticos | spa |
dc.relation.references | Trastoy R, Blasco L, Bou G, Tomas M. ighting antimicrobial resistance in ESKAPE
pathogens. Fight Antimicrob Resist. 2018;33(3):1–18. | spa |
dc.relation.references | OMS. La OMS publica la lista de las bacterias para las que se necesitan urgentemente
nuevos antibióticos [Internet]. 2017. Available from:
https://www.who.int/es/news/item/27-02-2017-who-publishes-list-of-bacteria-for-whic
h-new-antibiotics-are-urgently-needed | spa |
dc.relation.references | OMS. VIH/sida [Internet]. 2020. Available from:
https://www.who.int/es/news-room/fact-sheets/detail/hiv-aids | spa |
dc.relation.references | OMS. Hepatitis B [Internet]. 2020. Available from:
https://www.who.int/es/news-room/fact-sheets/detail/hepatitis-b | spa |
dc.relation.references | Ministerio de Salud y Protección Social de Colombia.
Sofosbuvir–velpatasvir–voxilaprevir. Versión completa Vía clínica para el tratamiento
de hepatitis C crónica. 2018; Available from:
https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/MET/via-clini
ca-tratamiento-hepatitisc.pdf | spa |
dc.relation.references | OMS. Virus del herpes simple [Internet]. 2020. Available from:
https://www.who.int/es/news-room/fact-sheets/detail/herpes-simplex-virus | spa |
dc.relation.references | OMS. Paludismo [Internet]. 2020. Available from:
https://www.who.int/es/news-room/fact-sheets/detail/malaria | spa |
dc.relation.references | OMS. La enfermedad de Chagas (tripanosomiasis americana) [Internet]. 2020.
Available from:
https://www.who.int/es/news-room/fact-sheets/detail/chagas-disease-(american-trypan
osomiasis) | spa |
dc.relation.references | Mlynarczyk DT, Dlugaszewska J, Kaluzna-Mlynarczyk A, Goslinski T. Dendrimers
against fungi – A state of the art review. J Control Release [Internet]. 2021;330(August
2020):599–617. Available from: https://doi.org/10.1016/j.jconrel.2020.12.021 | spa |
dc.relation.references | Voltan AR, Quindós G, Alarcón KPM, Fusco-Almeida AM, Mendes-Giannini MJS,
Chorilli M. Fungal diseases: Could nanostructured drug delivery systems be a novel
paradigm for therapy? Int J Nanomedicine. 2016;11:3715–30. | spa |
dc.relation.references | Society AC. American Cancer Society. Cancer Facts & Figures 2020 [Internet].
American Cancer Society. 2020. p. 1–52. Available from:
http://www.cancer.org/acs/groups/content/@nho/documents/document/caff2007pwsec
uredpdf.pdf | spa |
dc.relation.references | INC. INSTITUTO NACIONAL DEL CANCER [Internet]. Available from:
https://www.cancer.gov/espanol | spa |
dc.relation.references | de Araújo RV, da Silva Santos S, Ferreira EI, Giarolla J. New advances in general
biomedical applications of PAMAM dendrimers. Molecules. 2018;23(11):1–27. | spa |
dc.relation.references | COLLIER HO. Antibiotics today. Research. 1948;1(11):501–8. | spa |
dc.relation.references | Robinson FPA, Shalit M. The dezincification of brass. Anti-Corrosion Methods Mater.
1964;11(4):11–4. | spa |
dc.relation.references | Scientific WHO. Antimicrobial resistance. WHO Scientific Working Group. Bull ofthe
World Heal Organ [Internet]. 1983;61(3):383–94. Available from:
http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC2536104&blobtype=pdf | spa |
dc.relation.references | Laible NJ, Germaine GR. Bactericidal activity of human lysozyme, muramidase -
inactive lysozyme, and cationic polypeptides against Streptococcus sanguis and
Streptococcus faecalis: Inhibition by chitin oligosaccharides. Infect Immun.
1985;48(3):720–8. | spa |
dc.relation.references | Gutsche CD, Nam KC. Calixarenes. 22. Synthesis, Properties, and Metal
Complexation of Aminocalixarenes. J Am Chem Soc. 1988;110(18):6153–62. | spa |
dc.relation.references | CORNFORTH JW, HART PD, NICHOLLS GA, REES RJ, STOCK JA.
Antituberculous effects of certain surface-active polyoxyethylene ethers. Br J
Pharmacol Chemother. 1955;10(1):73–88. | spa |
dc.relation.references | Dondoni A, Marra A. Calixarene and calixresorcarene glycosides: Their synthesis and
biological applications. Chem Rev. 2010;110(9):4949–77. | spa |
dc.relation.references | CROW WB. Organic Compounds. A Synopsis Biol. 1964;397–401. | spa |
dc.relation.references | Da Silva E, Shahgaldian P, Coleman AW. Haemolytic properties of some water-soluble
para-sulphonato-calix-[n]- arenes. Int J Pharm. 2004;273(1–2):57–62. | spa |
dc.relation.references | Mourer M, Duval RE, Finance C, Regnouf-de-Vains JB. Functional organisation and
gain of activity: The case of the antibacterial tetra-para-guanidinoethyl-calix[4]arene.
Bioorganic Med Chem Lett. 2006;16(11):2960–3. | spa |
dc.relation.references | Grare M, Mourer M, Fontanay S, Regnouf-de-Vains JB, Finance C, Duval RE. In vitro
activity of para-guanidinoethylcalix[4]arene against susceptible and antibiotic-resistant
Gram-negative and Gram-positive bacteria. J Antimicrob Chemother.
2007;60(3):575–81. | spa |
dc.relation.references | Yousaf A, Hamid SA, Bunnori NM. Applications of calixarenes in cancer
chemotherapy. Drug Des Devel Ther. 2015;9:2831–8. | spa |
dc.relation.references | Shaw HJ. Thyroid Cancer. Br Med J. 1976;1(6007):456. | spa |
dc.relation.references | Li M, Mao L, Chen M, Li M, Wang K, Mo J. Characterization of an amphiphilic
phosphonated calixarene carrier loaded with carboplatin and paclitaxel: A preliminary
study to treat colon cancer in vitro and in vivo. Front Bioeng Biotechnol.
2019;7(October):1–15. | spa |
dc.relation.references | García-Gallego S, Franci G, Falanga A, Gómez R, Folliero V, Galdiero S, et al.
Function oriented molecular design: Dendrimers as novel antimicrobials. Molecules.
2017;22(10):1–29. | spa |
dc.relation.references | DEP® docetaxel (Phase 2) [Internet]. Available from:
https://starpharma.com/drug_delivery/dep_docetaxel | spa |
dc.relation.references | Starpharma. Starpharma to commence DEP® cabazitaxel phase 1/2 trial [Internet].
2018. Available from: https://starpharma.com/news/356 | spa |
dc.relation.references | INSTITUT PASTEUR. A synthetic glycopeptide for anti-tumor immunotherapy: from
design to first use in human [Internet]. 2015. Available from:
https://research.pasteur.fr/en/project/a-synthetic-glycopeptide-for-anti-tumor-immunot
herapy-from-design-to-first-use-in-human/ | spa |
dc.relation.references | ClinicalTrials. Treatment of Non-responding to Conventional Therapy Inoperable
Liver Cancers by in Situ Introduction of ImDendrim (ImDendrim) [Internet]. Available
from: https://clinicaltrials.gov/ct2/show/NCT03255343?term=dendrimer | spa |
dc.relation.references | ClinicalTrials. A Study to Evaluate the Safety, Tolerability, and Pharmacokinetics of
OP-101 After Intravenous Administration in Healthy Volunteers [Internet]. 2018.
Available from: https://clinicaltrials.gov/ct2/show/NCT03500627?term=dendrimer | spa |
dc.relation.references | Akhtar S, Al-Zaid B, El-Hashim AZ, Chandrasekhar B, Attur S, Yousif MHM, et al.
Cationic polyamidoamine dendrimers as modulators of EGFR signaling in vitro and in
vivo. PLoS One. 2015;10(7):1–22. | spa |
dc.relation.references | Akhtar S, Al-zaid B, El-hashim AZ CB. Cationic Polyamidoamine Dendrimers as
Modulators of EGFR Signaling In Vitro and In Vivo. 2015;1–22. 17. Siemens
Healthineers. Stratus® CS 200 Acute CareTM Troponin Analyzer. [Internet]. 2019.
Available from:
https://www.siemens-healthineers.com/cardiac/cardiac-systems/stratus-cs-acute-care | spa |
dc.relation.references | Dias AP, da Silva Santos S, da Silva JV, Parise-Filho R, Igne Ferreira E, Seoud O El, et
al. Dendrimers in the context of nanomedicine. Int J Pharm [Internet].
2020;573(October 2019):118814. Available from:
https://doi.org/10.1016/j.ijpharm.2019.118814 | spa |
dc.relation.references | Shurpik DN, Padnya PL, Stoikov II, Cragg PJ. Antimicrobial Activity of Calixarenes
and Related Macrocycles. Molecules. 2020;25(21). | spa |
dc.relation.references | Eddaif L, Trif L, Telegdi J, Egyed O, Shaban A. Calix[4]resorcinarene macrocycles:
Synthesis, thermal behavior and crystalline characterization. J Therm Anal Calorim.
2019;137(2):529–41. | spa |
dc.relation.references | Mourer M, Duval RE, Constant P, Daffé M, Regnouf-de-Vains JB. Impact of
Tetracationic Calix[4]arene Conformation—from Conic Structure to Expanded
Bolaform—on Their Antibacterial and Antimycobacterial Activities. ChemBioChem.
2019;20(7):911–21. | spa |
dc.relation.references | Pur FN. Calix[4]API-s: fully functionalized calix[4]arene-based facial active
pharmaceutical ingredients. Mol Divers [Internet]. 2021;25(2):1247–58. Available
from: https://doi.org/10.1007/s11030-020-10042-0 | spa |
dc.relation.references | Español ES, Villamil MM. Calixarenes: Generalities and their role in improving the
solubility, biocompatibility, stability, bioavailability, detection, and transport of
biomolecules. Biomolecules. 2019;9(3). | spa |
dc.relation.references | Li N, Harrison RG, Lamb JD. Application of resorcinarene derivatives in chemical
separations. J Incl Phenom Macrocycl Chem. 2014;78(1–4):39–60. | spa |
dc.relation.references | Beyeh NK, Weimann DP, Kaufmann L, Schalley CA, Rissanen K. Ion-pair recognition
of tetramethylammonium salts by halogenated resorcinarenes. Chem - A Eur J.
2012;18(18):5552–7. | spa |
dc.relation.references | Wang F, Wu Y, Lu K, Ye B. A simple but highly sensitive and selective
calixarene-based voltammetric sensor for serotonin. Electrochim Acta [Internet].
2013;87:756–62. Available from: http://dx.doi.org/10.1016/j.electacta.2012.09.033 | spa |
dc.relation.references | Cortez-Maya S, Hernández-Ortega S, Ramírez-Apan T, Lijanova I V., Martínez-García
M. Synthesis of 5-aryl-1,4-benzodiazepine derivatives attached in
resorcinaren-PAMAM dendrimers and their anti-cancer activity. Bioorganic Med
Chem [Internet]. 2012;20(1):415–21. Available from:
http://dx.doi.org/10.1016/j.bmc.2011.10.070 | spa |
dc.relation.references | Sanabria E, Esteso MA, Pérez-Redondo A, Vargas E, Maldonado M. Synthesis and
characterization of two sulfonated resorcinarenes: A new example of a linear array of
sodium centers and macrocycles. Molecules. 2015;20(6):9915–28. | spa |
dc.relation.references | Korchowiec B, Gorczyca M, Rogalska E, Regnouf-De-Vains JB, Mourer M,
Korchowiec J. The selective interactions of cationic
tetra-p-guanidinoethylcalix[4]arene with lipid membranes: Theoretical and
experimental model studies. Soft Matter [Internet]. 2015;12(1):181–90. Available
from: http://dx.doi.org/10.1039/C5SM01891A | spa |
dc.relation.references | Wrobel EC, De Lara LS, Do Carmo TAS, Castellen P, Lazzarotto M, De Lázaro SR, et
al. The antibacterial activity of: P-tert-butylcalix[6]arene and its effect on a membrane
model: Molecular dynamics and Langmuir film studies. Phys Chem Chem Phys.
2020;22(11):6154–66. | spa |
dc.relation.references | Sautrey G, Orlof M, Korchowiec B, De Vains JBR, Rogalska E. Membrane activity of
tetra-p-guanidinoethylcalix[4]arene as a possible reason for its antibacterial properties.
J Phys Chem B. 2011;115(50):15002–12. | spa |
dc.relation.references | Korchowiec B, Korchowiec J, Gorczyca M, Regnouf De Vains JB, Rogalska E.
Molecular organization of nalidixate conjugated calixarenes in bacterial model
membranes probed by molecular dynamics simulation and langmuir monolayer
studies. J Phys Chem B. 2015;119(7):2990–3000. | spa |
dc.relation.references | Korchowiec B, Korchowiec J, Orlof-Naturalna M, de Vains JBR, Rogalska E. Two
antibacterial nalidixate calixarene derivatives in cholesterol monolayers: Molecular
dynamics and physicochemical effects. Colloids Surfaces B Biointerfaces [Internet].
2016;145:777–84. Available from: http://dx.doi.org/10.1016/j.colsurfb.2016.05.082 | spa |
dc.relation.references | Bahojb Noruzi E, Kheirkhahi M, Shaabani B, Geremia S, Hickey N, Asaro F, et al.
Design of a Thiosemicarbazide-Functionalized Calix[4]arene Ligand and Related
Transition Metal Complexes: Synthesis, Characterization, and Biological Studies.
Front Chem. 2019;7. | spa |
dc.relation.references | Noruzi EB, Shaabani B, Geremia S, Hickey N, Nitti P, Kafil HS. Synthesis, crystal
structure, and biological activity of a multidentate calix[4]arene ligand doubly
functionalized by 2-hydroxybenzeledene-thiosemicarbazone. Molecules. 2020;25(2). | spa |
dc.relation.references | Consoli GML, Granata G, Picciotto R, Blanco AR, Geraci C, Marino A, et al. Design,
synthesis and antibacterial evaluation of a polycationic calix[4]arene derivative alone
and in combination with antibiotics. Medchemcomm [Internet]. 2018;9(1):160–4.
Available from: http://dx.doi.org/10.1039/C7MD00527J | spa |
dc.relation.references | Patel MB, Modi NR, Raval JP, Menon SK. Calix[4]arene based 1,3,4-oxadiazole and
thiadiazole derivatives: Design, synthesis, and biological evaluation. Org Biomol
Chem. 2012;10(9):1785–94. | spa |
dc.relation.references | Mourer M, Massimba Dibama H, Constant P, Daffé M, Regnouf-De-Vains JB.
Anti-mycobacterial activities of some cationic and anionic calix[4]arene derivatives.
Bioorganic Med Chem [Internet]. 2012;20(6):2035–41. Available from:
http://dx.doi.org/10.1016/j.bmc.2012.01.041 | spa |
dc.relation.references | O. Melezhyk I, V. Rodik R, V. Iavorska N, S. Klymchenko A, Mely Y, V. Shepelevych
V, et al. Antibacterial Properties of Tetraalkylammonium and Imidazolium
Tetraalkoxycalix[4]arene Derivatives. Anti-Infective Agents. 2015;13(1):87–94. | spa |
dc.relation.references | Formosa C, Grare M, Jauvert E, Coutable A, Regnouf-De-Vains JB, Mourer M, et al.
Nanoscale analysis of the effects of antibiotics and CX1 on a Pseudomonas aeruginosa
multidrug-resistant strain. Sci Rep. 2012;2:1–9. | spa |
dc.relation.references | Granata G, Stracquadanio S, Consoli GML, Cafiso V, Stefani S, Geraci C. Synthesis of
a calix[4]arene derivative exposing multiple units of fucose and preliminary
investigation as a potential broad-spectrum antibiofilm agent. Carbohydr Res
[Internet]. 2019;476(January):60–4. Available from:
https://doi.org/10.1016/j.carres.2019.03.005 | spa |
dc.relation.references | Agrahari AK, Singh AK, Singh AS, Singh M, Maji P, Yadav S, et al. Click inspired
synthesis of: P-tert -butyl calix[4]arene tethered benzotriazolyl dendrimers and their
evaluation as anti-bacterial and anti-biofilm agents. New J Chem.
2020;44(44):19300–13. | spa |
dc.relation.references | Rhee KY, Gardiner DF. Clinical relevance of bacteriostatic versus bactericidal activity
in the treatment of gram-positive bacterial infections [2]. Clin Infect Dis.
2004;39(5):755–6. | spa |
dc.relation.references | Abosadiya HM, Hasbullah SA, Mackeen MM, Low SC, Ibrahim N, Koketsu M, et al.
Synthesis, characterization, X-ray structure and biological activities of
c-5-bromo-2-hydroxyphenylcalix[4]-2-methyl resorcinarene. Molecules.
2013;18(11):13369–84. | spa |
dc.relation.references | Kashapov RR, Razuvayeva YS, Ziganshina AY, Mukhitova RK, Sapunova AS,
Voloshina AD, et al. N-Methyl-d-glucamine–Calix[4]resorcinarene Conjugates:
Self-assembly and biological properties. Molecules. 2019;24(10):1–15. | spa |
dc.relation.references | Dibama HM, Clarot I, Fontanay S, Salem A Ben, Mourer M, Finance C, et al. Towards
calixarene-based prodrugs: Drug release and antibacterial behaviour of a water-soluble
nalidixic acid/calix[4]arene ester adduct. Bioorganic Med Chem Lett [Internet].
2009;19(10):2679–82. Available from: http://dx.doi.org/10.1016/j.bmcl.2009.03.139 | spa |
dc.relation.references | Muneer S, Memon S, Pahnwar QK, Bhatti AA, Khokhar TS. Synthesis and
investigation of antimicrobial properties of pyrrolidine appended calix[4]arene. J Anal
Sci Technol. 2017;8(1):4–9. | spa |
dc.relation.references | Ali Y, Bunnori NM, Susanti D, Alhassan AM, Hamid SA. Synthesis, in-Vitro and in
Silico studies of azo-based calix[4]arenes as antibacterial agent and neuraminidase
inhibitor: A new look into an old scaffold. Front Chem. 2018;6(JUN):1–10. | spa |
dc.relation.references | Dawn A, Chandra H, Ade-Browne C, Yadav J, Kumari H. Multifaceted
Supramolecular Interactions from C-Methylresorcin[4]arene Lead to an Enhancement
in In Vitro Antibacterial Activity of Gatifloxacin. Chem - A Eur J.
2017;23(72):18171–9. | spa |
dc.relation.references | Ali I, Imran M, Saifullah S, Tian HW, Guo DS, Shah MR. Amphiphilic
p-sulfonatocalix[6]arene based self-assembled nanostructures for enhanced
clarithromycin activity against resistant Streptococcus Pneumoniae. Colloids Surfaces
B Biointerfaces [Internet]. 2020;186:110676. Available from:
https://doi.org/10.1016/j.colsurfb.2019.110676 | spa |
dc.relation.references | Ukhatskaya E V., Kurkov S V., Hjálmarsdóttir MA, Karginov VA, Matthews SE,
Rodik R V., et al. Cationic quaternized aminocalix[4]arenes: Cytotoxicity, haemolytic
and antibacterial activities. Int J Pharm [Internet]. 2013;458(1):25–30. Available from:
http://dx.doi.org/10.1016/j.ijpharm.2013.10.028 | spa |
dc.relation.references | Bahojb Noruzi E, Kheirkhahi M, Shaabani B, Geremia S, Hickey N, Asaro F, et al.
Design of a Thiosemicarbazide-Functionalized Calix[4]arene Ligand and Related
Transition Metal Complexes: Synthesis, Characterization, and Biological Studies.
Front Chem. 2019;7(October):1–15. | spa |
dc.relation.references | Biasoli M. C a n d i d i a s i s. Cent Ref Micol [Internet]. 2015;2(1):1–31. Available
from:
https://www.fbioyf.unr.edu.ar/evirtual/file.php/118/MATERIALES_2013/TEORICOS
_2013/CANDIDIASIS_2013-1.pdf | spa |
dc.relation.references | Fortún J, Meije Y, Fresco G, Moreno S. Aspergilosis. Formas clínicas y tratamiento.
Enferm Infecc Microbiol Clin. 2012;30(4):201–8. | spa |
dc.relation.references | Souza Goebel C, de Mattos Oliveira F, Severo LC. Infección por Saccharomyces
cerevisiae. Rev Iberoam Micol [Internet]. 2013;30(3):205–8. Available from:
http://dx.doi.org/10.1016/j.riam.2013.03.001 | spa |
dc.relation.references | Soares MN, Gáscon TM, Fonseca FLA, Ferreira KS, Bagatin IA. Evaluation of the
biological effects of 5-Cl-8-oxyquinolinepropoxycalix[4] arene and
8-oxyquinolinepropoxycalix[4]arene in vitro and in vivo. Mater Sci Eng C [Internet].
2014;40:260–6. Available from: http://dx.doi.org/10.1016/j.msec.2014.04.002 | spa |
dc.relation.references | Mehta V, Athar M, Jha PC, Panchal M, Modi K, Jain VK. Efficiently functionalized
oxacalix[4]arenes: Synthesis, characterization and exploration of their biological
profile as novel HDAC inhibitors. Bioorganic Med Chem Lett [Internet].
2016;26(3):1005–10. Available from: http://dx.doi.org/10.1016/j.bmcl.2015.12.044 | spa |
dc.relation.references | Paquet V, Zumbuehl A, Carreira EM. Biologically active amphotericin B-calix[4]arene
conjugates. Bioconjug Chem. 2006;17(6):1460–3. | spa |
dc.relation.references | Mkpenie V, Ebong G, Obot IB, Abasiekong B. Evaluation of the effect of azo group on
the biological activity of 1-(4-Methylphenylazo)-2-naphthol. E-Journal Chem.
2008;5(3):431–4. | spa |
dc.relation.references | Geller C, Fontanay S, Mourer M, Dibama HM, Regnouf-de-Vains JB, Finance C, et al.
Antiseptic properties of two calix[4]arenes derivatives on the human coronavirus
229E. Antiviral Res. 2010;88(3):343–6. | spa |
dc.relation.references | Zweier. 基因的改变NIH Public Access. Bone [Internet]. 2014;23(1):1–7. Available
from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf | spa |
dc.relation.references | Galante E, Geraci C, Sciuto S, Campo VL, Carvalho I, Sesti-Costa R, et al.
Glycoclusters presenting lactose on calix[4]arene cores display trypanocidal activity.
Tetrahedron. 2011;67(33):5902–12. | spa |
dc.relation.references | Shah RB, Valand NN, Sutariya PG, Menon SK. Design, synthesis and characterization
of quinoline-pyrimidine linked calix[4]arene scaffolds as anti-malarial agents. J Incl
Phenom Macrocycl Chem. 2015;84(1–2):173–8. | spa |
dc.relation.references | Dings RPM, Miller MC, Nesmelova I, Astorgues-Xerri L, Kumar N, Serova M, et al.
Antitumor agent calixarene 0118 targets human galectin-1 as an allosteric inhibitor of
carbohydrate binding. J Med Chem. 2012;55(11):5121–9. | spa |
dc.relation.references | Dings RPM, Chen X, Hellebrekers DMEI, van Eijk LI, Zhang Y, Hoye TR, et al.
Design of nonpeptidic topomimetics of antiangiogenic proteins with antitumor
activities. J Natl Cancer Inst. 2006;98(13):932–6. | spa |
dc.relation.references | An L, Wang C, Zheng YG, Liu J dong, Huang T hui. Design, synthesis and evaluation
of calix[4]arene-based carbonyl amide derivatives with antitumor activities. Eur J Med
Chem [Internet]. 2021;210(xxxx):112984. Available from:
https://doi.org/10.1016/j.ejmech.2020.112984 | spa |
dc.relation.references | Gordo S, Martos V, Santos E, Menéndez M, Bo C, Giralt E, et al. Stability and
structural recovery of the tetramerization domain of p53-R337H mutant induced by a
designed templating ligand. Proc Natl Acad Sci U S A. 2008;105(43):16426–31. | spa |
dc.relation.references | Gordo S, Martos V, Vilaseca M, Menéndez M, De Mendoza J, Giralt E. On the role of
flexibility in protein-ligand interactions: The example of p53 tetramerization domain.
Chem - An Asian J. 2011;6(6):1463–9. | spa |
dc.relation.references | Raymond E. OTX008, a selective small-molecule inhibitor of galectin-1,
downregulates cancer cell proliferation, invasion and tumour angiogenesis. Eur J
Cancer. 2014;50(14):2463–77. | spa |
dc.relation.references | Dings RPM, Levine JI, Brown SG, Astorgues-Xerri L, MacDonald JR, Hoye TR, et al.
Polycationic calixarene PTX013, a potent cytotoxic agent against tumors and drug
resistant cancer. Invest New Drugs. 2013;31(5):1142–50. | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) | spa |
dc.subject.lemb | Resorcinareno | |
dc.subject.lemb | RAM | |
dc.subject.lemb | Citotoxicidad | |
dc.subject.proposal | Dendrímero | spa |
dc.subject.proposal | Calixareno | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TP | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_14cb | spa |